Source code for highway_env.envs.intersection_env

from typing import Dict, Tuple

from gym.envs.registration import register
import numpy as np

from highway_env import utils
from highway_env.envs.common.abstract import AbstractEnv
from highway_env.road.lane import LineType, StraightLane, CircularLane, AbstractLane
from highway_env.road.regulation import RegulatedRoad
from highway_env.road.road import RoadNetwork
from highway_env.vehicle.controller import MDPVehicle


[docs]class IntersectionEnv(AbstractEnv): COLLISION_REWARD: float = -5 HIGH_SPEED_REWARD: float = 1 ARRIVED_REWARD: float = 1 ACTIONS: Dict[int, str] = { 0: 'SLOWER', 1: 'IDLE', 2: 'FASTER' } ACTIONS_INDEXES = {v: k for k, v in ACTIONS.items()}
[docs] @classmethod def default_config(cls) -> dict: config = super().default_config() config.update({ "observation": { "type": "Kinematics", "vehicles_count": 15, "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"], "features_range": { "x": [-100, 100], "y": [-100, 100], "vx": [-20, 20], "vy": [-20, 20], }, "absolute": True, "flatten": False, "observe_intentions": False }, "action": { "type": "DiscreteMetaAction", "longitudinal": False, "lateral": True }, "duration": 13, # [s] "destination": "o1", "initial_vehicle_count": 10, "spawn_probability": 0.6, "screen_width": 600, "screen_height": 600, "centering_position": [0.5, 0.6], "scaling": 5.5 * 1.3, "collision_reward": IntersectionEnv.COLLISION_REWARD, "normalize_reward": False }) return config
[docs] def _reward(self, action: int) -> float: reward = self.config["collision_reward"] * self.vehicle.crashed \ + self.HIGH_SPEED_REWARD * (self.vehicle.speed_index == self.vehicle.SPEED_COUNT - 1) reward = self.ARRIVED_REWARD if self.has_arrived else reward if self.config["normalize_reward"]: reward = utils.lmap(reward, [self.config["collision_reward"], self.ARRIVED_REWARD], [0, 1]) return reward
[docs] def _is_terminal(self) -> bool: """The episode is over when a collision occurs or when the access ramp has been passed.""" return self.vehicle.crashed \ or self.steps >= self.config["duration"] * self.config["policy_frequency"] \ or self.has_arrived
[docs] def reset(self) -> np.ndarray: self._make_road() self._make_vehicles(self.config["initial_vehicle_count"]) self.steps = 0 return super().reset()
[docs] def step(self, action: int) -> Tuple[np.ndarray, float, bool, dict]: results = super().step(action) self.steps += 1 self._clear_vehicles() self._spawn_vehicle(spawn_probability=self.config["spawn_probability"]) return results
[docs] def _make_road(self) -> None: """ Make an 4-way intersection. The horizontal road has the right of way. More precisely, the levels of priority are: - 3 for horizontal straight lanes and right-turns - 1 for vertical straight lanes and right-turns - 2 for horizontal left-turns - 0 for vertical left-turns The code for nodes in the road network is: (o:outer | i:inner + [r:right, l:left]) + (0:south | 1:west | 2:north | 3:east) :return: the intersection road """ lane_width = AbstractLane.DEFAULT_WIDTH right_turn_radius = lane_width + 5 # [m} left_turn_radius = right_turn_radius + lane_width # [m} outer_distance = right_turn_radius + lane_width / 2 access_length = 50 + 50 # [m] net = RoadNetwork() n, c, s = LineType.NONE, LineType.CONTINUOUS, LineType.STRIPED for corner in range(4): angle = np.radians(90 * corner) is_horizontal = corner % 2 priority = 3 if is_horizontal else 1 rotation = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) # Incoming start = rotation @ np.array([lane_width / 2, access_length + outer_distance]) end = rotation @ np.array([lane_width / 2, outer_distance]) net.add_lane("o" + str(corner), "ir" + str(corner), StraightLane(start, end, line_types=[s, c], priority=priority, speed_limit=10)) # Right turn r_center = rotation @ (np.array([outer_distance, outer_distance])) net.add_lane("ir" + str(corner), "il" + str((corner - 1) % 4), CircularLane(r_center, right_turn_radius, angle + np.radians(180), angle + np.radians(270), line_types=[n, c], priority=priority, speed_limit=10)) # Left turn l_center = rotation @ (np.array([-left_turn_radius + lane_width / 2, left_turn_radius - lane_width / 2])) net.add_lane("ir" + str(corner), "il" + str((corner + 1) % 4), CircularLane(l_center, left_turn_radius, angle + np.radians(0), angle + np.radians(-90), clockwise=False, line_types=[n, n], priority=priority - 1, speed_limit=10)) # Straight start = rotation @ np.array([lane_width / 2, outer_distance]) end = rotation @ np.array([lane_width / 2, -outer_distance]) net.add_lane("ir" + str(corner), "il" + str((corner + 2) % 4), StraightLane(start, end, line_types=[s, n], priority=priority, speed_limit=10)) # Exit start = rotation @ np.flip([lane_width / 2, access_length + outer_distance], axis=0) end = rotation @ np.flip([lane_width / 2, outer_distance], axis=0) net.add_lane("il" + str((corner - 1) % 4), "o" + str((corner - 1) % 4), StraightLane(end, start, line_types=[n, c], priority=priority, speed_limit=10)) road = RegulatedRoad(network=net, np_random=self.np_random, record_history=self.config["show_trajectories"]) self.road = road
[docs] def _make_vehicles(self, n_vehicles: int = 10) -> None: """ Populate a road with several vehicles on the highway and on the merging lane :return: the ego-vehicle """ # Configure vehicles vehicle_type = utils.class_from_path(self.config["other_vehicles_type"]) vehicle_type.DISTANCE_WANTED = 7 # Low jam distance vehicle_type.COMFORT_ACC_MAX = 6 vehicle_type.COMFORT_ACC_MIN = -3 # Random vehicles simulation_steps = 3 for t in range(n_vehicles - 1): self._spawn_vehicle(np.linspace(0, 80, n_vehicles)[t]) for _ in range(simulation_steps): [(self.road.act(), self.road.step(1 / self.config["simulation_frequency"])) for _ in range(self.config["simulation_frequency"])] # Challenger vehicle self._spawn_vehicle(60, spawn_probability=1, go_straight=True, position_deviation=0.1, speed_deviation=0) # Ego-vehicle MDPVehicle.SPEED_MIN = 0 MDPVehicle.SPEED_MAX = 9 MDPVehicle.SPEED_COUNT = 3 # MDPVehicle.TAU_A = 1.0 ego_lane = self.road.network.get_lane(("o0", "ir0", 0)) destination = self.config["destination"] or "o" + str(self.np_random.randint(1, 4)) ego_vehicle = self.action_type.vehicle_class( self.road, ego_lane.position(60, 0), speed=ego_lane.speed_limit, heading=ego_lane.heading_at(50)) \ .plan_route_to(destination) self.road.vehicles.append(ego_vehicle) self.vehicle = ego_vehicle for v in self.road.vehicles: # Prevent early collisions if v is not ego_vehicle and np.linalg.norm(v.position - ego_vehicle.position) < 20: self.road.vehicles.remove(v)
[docs] def _spawn_vehicle(self, longitudinal: float = 0, position_deviation: float = 1., speed_deviation: float = 1., spawn_probability: float = 0.6, go_straight: bool = False) -> None: if self.np_random.rand() > spawn_probability: return route = self.np_random.choice(range(4), size=2, replace=False) route[1] = (route[0] + 2) % 4 if go_straight else route[1] vehicle_type = utils.class_from_path(self.config["other_vehicles_type"]) vehicle = vehicle_type.make_on_lane(self.road, ("o" + str(route[0]), "ir" + str(route[0]), 0), longitudinal=longitudinal + 5 + self.np_random.randn() * position_deviation, speed=8 + self.np_random.randn() * speed_deviation) for v in self.road.vehicles: if np.linalg.norm(v.position - vehicle.position) < 15: return vehicle.plan_route_to("o" + str(route[1])) vehicle.randomize_behavior() self.road.vehicles.append(vehicle) return vehicle
[docs] def _clear_vehicles(self) -> None: is_leaving = lambda vehicle: "il" in vehicle.lane_index[0] and "o" in vehicle.lane_index[1] \ and vehicle.lane.local_coordinates(vehicle.position)[0] \ >= vehicle.lane.length - 4 * vehicle.LENGTH self.road.vehicles = [vehicle for vehicle in self.road.vehicles if vehicle is self.vehicle or not (is_leaving(vehicle) or vehicle.route is None)]
@property def has_arrived(self, exit_distance=25) -> bool: return "il" in self.vehicle.lane_index[0] \ and "o" in self.vehicle.lane_index[1] \ and self.vehicle.lane.local_coordinates(self.vehicle.position)[0] >= exit_distance
[docs] def _cost(self, action: int) -> float: """The constraint signal is the occurrence of collisions.""" return float(self.vehicle.crashed)
register( id='intersection-v0', entry_point='highway_env.envs:IntersectionEnv', )