Source code for highway_env.envs.parking_env

from typing import Tuple

from gym.envs.registration import register
from gym import GoalEnv
import numpy as np
from numpy.core._multiarray_umath import ndarray

from highway_env.envs.common.abstract import AbstractEnv
from highway_env.road.lane import StraightLane, LineType
from highway_env.road.road import Road, RoadNetwork
from highway_env.vehicle.kinematics import Vehicle
from highway_env.road.objects import Landmark


[docs]class ParkingEnv(AbstractEnv, GoalEnv): """ A continuous control environment. It implements a reach-type task, where the agent observes their position and speed and must control their acceleration and steering so as to reach a given goal. Credits to Munir Jojo-Verge for the idea and initial implementation. """ REWARD_WEIGHTS: ndarray = np.array([1, 0.3, 0, 0, 0.02, 0.02]) SUCCESS_GOAL_REWARD: float = 0.12 STEERING_RANGE: float = np.deg2rad(45)
[docs] @classmethod def default_config(cls) -> dict: config = super().default_config() config.update({ "observation": { "type": "KinematicsGoal", "features": ['x', 'y', 'vx', 'vy', 'cos_h', 'sin_h'], "scales": [100, 100, 5, 5, 1, 1], "normalize": False }, "action": { "type": "ContinuousAction" }, "simulation_frequency": 15, "policy_frequency": 5, "screen_width": 600, "screen_height": 300, "centering_position": [0.5, 0.5], "scaling": 7 }) return config
[docs] def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]: obs, reward, terminal, info = super().step(action) info.update({"is_success": self._is_success(obs['achieved_goal'], obs['desired_goal'])}) return obs, reward, terminal, info
[docs] def reset(self) -> np.ndarray: self._create_road() self._create_vehicles() return super().reset()
[docs] def _create_road(self, spots: int = 15) -> None: """ Create a road composed of straight adjacent lanes. :param spots: number of spots in the parking """ net = RoadNetwork() width = 4.0 lt = (LineType.CONTINUOUS, LineType.CONTINUOUS) x_offset = 0 y_offset = 10 length = 8 for k in range(spots): x = (k - spots // 2) * (width + x_offset) - width / 2 net.add_lane("a", "b", StraightLane([x, y_offset], [x, y_offset+length], width=width, line_types=lt)) net.add_lane("b", "c", StraightLane([x, -y_offset], [x, -y_offset-length], width=width, line_types=lt)) self.road = Road(network=net, np_random=self.np_random, record_history=self.config["show_trajectories"])
[docs] def _create_vehicles(self) -> None: """Create some new random vehicles of a given type, and add them on the road.""" self.vehicle = self.action_type.vehicle_class(self.road, [0, 0], 2*np.pi*self.np_random.rand(), 0) self.road.vehicles.append(self.vehicle) lane = self.np_random.choice(self.road.network.lanes_list()) self.goal = Landmark(self.road, lane.position(lane.length/2, 0), heading=lane.heading) self.road.objects.append(self.goal)
[docs] def compute_reward(self, achieved_goal: np.ndarray, desired_goal: np.ndarray, info: dict, p: float = 0.5) -> float: """ Proximity to the goal is rewarded We use a weighted p-norm :param achieved_goal: the goal that was achieved :param desired_goal: the goal that was desired :param dict info: any supplementary information :param p: the Lp^p norm used in the reward. Use p<1 to have high kurtosis for rewards in [0, 1] :return: the corresponding reward """ return -np.power(np.dot(np.abs(achieved_goal - desired_goal), self.REWARD_WEIGHTS), p)
[docs] def _reward(self, action: np.ndarray) -> float: obs = self.observation_type.observe() return self.compute_reward(obs['achieved_goal'], obs['desired_goal'], {})
[docs] def _is_success(self, achieved_goal: np.ndarray, desired_goal: np.ndarray) -> bool: return self.compute_reward(achieved_goal, desired_goal, {}) > -self.SUCCESS_GOAL_REWARD
[docs] def _is_terminal(self) -> bool: """The episode is over if the ego vehicle crashed or the goal is reached.""" obs = self.observation_type.observe() return self.vehicle.crashed or self._is_success(obs['achieved_goal'], obs['desired_goal'])
class ParkingEnvActionRepeat(ParkingEnv): def __init__(self): super().__init__({"policy_frequency": 1}) register( id='parking-v0', entry_point='highway_env.envs:ParkingEnv', max_episode_steps=100 ) register( id='parking-ActionRepeat-v0', entry_point='highway_env.envs:ParkingEnvActionRepeat', max_episode_steps=20 )